4.6 Article

Preparation and Performance Test of the Super-Hydrophobic Polyurethane Coating Based on Waste Cooking Oil

Journal

COATINGS
Volume 9, Issue 12, Pages -

Publisher

MDPI
DOI: 10.3390/coatings9120861

Keywords

super-hydrophobic; waste cooking oil; environmentally sustainable; modified polyurethane; hydrophobic nano-silicon carbide particles; high mechanical durability

Funding

  1. Shandong Provincial Department of Science and Technology [2018GGX04008]

Ask authors/readers for more resources

In order to solve the problem of dust accumulation on the fin surface of a mine air cooler, a method of preparing super-hydrophobic polyurethane (SPU) coating based on waste cooking oil (WCO) was proposed. Firstly, the polyurethane prepolymer was synthesized with WCO as a raw material, and then the polyurethane prepolymer was modified with amino-terminated polydimethylsiloxane (ATP) to obtain SPU emulsion. The chemical structure and thermal stability of SPU were characterized by infrared spectrum and thermogravimetric analysis. A series of nanocomposites were prepared by combining modified silicon carbide (APT-SiC) particles and SPU emulsions. According to the parameters of pull-off strength, contact angle, sliding angle and thermal conductivity, the filler ratio of nanocomposites was optimized. The test results show that when the content of APT-SiC particles is 20 wt %, super-hydrophobic polyurethane coating can be obtained. The coating has good pull- off strength and thermal conductivity, and the contact angle and sliding angle are 161 degrees and 3 degrees, respectively. In addition, the practical application of the super-hydrophobic polyurethane coating was tested by related experiments. The experimental results show that the coating has good self-cleaning, wear resistance and anti-corrosion performance, can meet the requirements of air coolers in special environments, and has great application prospects.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available