4.7 Article

Minor alleles are associated with white rust (Albugo occidentalis) susceptibility in spinach (Spinacia oleracea)

Journal

HORTICULTURE RESEARCH
Volume 6, Issue -, Pages -

Publisher

OXFORD UNIV PRESS INC
DOI: 10.1038/s41438-019-0214-7

Keywords

-

Funding

  1. USDA-NIFA [SCRI 2017-51181-26830]
  2. Texas A&M AgriLife Research Vegetable Seed Grant [124353-96181]
  3. Texas A&M AgriLife Research Insect-vectored Disease Seed Grants [114,190-96,210]

Ask authors/readers for more resources

Minor alleles (MA) have been associated with disease incidence in human studies, enabling the identification of diagnostic risk factors for various diseases. However, allelic mapping has rarely been performed in plant systems. The goal of this study was to determine whether a difference in MA prevalence is a strong enough risk factor to indicate a likely significant difference in disease resistance against white rust (WR; Albugo occidentalis) in spinach (Spinacia oleracea). We used WR disease severity ratings (WR-DSRs) in a diversity panel of 267 spinach accessions to define resistant- and susceptibility-associated groups within the distribution scores and then tested the single-nucleotide polymorphism (SNP) variants to interrogate the MA prevalence in the most susceptible (MS) vs. most resistant (MR) individuals using permutation-based allelic association tests. A total of 448 minor alleles associated with WR severity were identified in the comparison between the 25% MS and the 25% MR accessions, while the MA were generally similar between the two halves of the interquartile range. The minor alleles in the MS group were distributed across all six chromosomes and made up similar to 71% of the markers that were also strongly associated with WR in parallel performed genome-wide association study. These results indicate that susceptibility may be highly determined by the disproportionate overrepresentation of minor alleles, which could be used to select for resistant plants. Furthermore, by focusing on the distribution tails, allelic mapping could be used to identify plant markers associated with quantitative traits on the most informative segments of the phenotypic distribution.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available