4.8 Article

Melanoma Lesions Independently Acquire T-cell Resistance during Metastatic Latency

Journal

CANCER RESEARCH
Volume 76, Issue 15, Pages 4347-4358

Publisher

AMER ASSOC CANCER RESEARCH
DOI: 10.1158/0008-5472.CAN-16-0008

Keywords

-

Categories

Ask authors/readers for more resources

Melanoma often recurs after a latency period of several years, presenting a T cell-edited phenotype that reflects a role for CD8(+) T cells in maintaining metastatic latency. Here, we report an investigation of a patient with multiple recurrent lesions, where poorly immunogenic melanoma phenotypes were found to evolve in the presence of autologous tumor antigen-specific CD8(+) T cells. Melanoma cells from two of three late recurrent metastases, developing within a 6-year latency period, lacked HLA class I expression. CD8(+) T cell-resistant, HLA class I-negative tumor cells became clinically apparent 1.5 and 6 years into stage IV disease. Genome profiling by SNP arrays revealed that HLA class I loss in both metastases originated from a shared chromosome 15q alteration and independently acquired focal B2M gene deletions. A third HLA class I haplotype-deficient lesion developed in year 3 of stage IV disease that acquired resistance toward dominant CD8(+) T-cell clonotypes targeting stage III tumor cells. At an early stage, melanoma cells showed a dedifferentiated c-Jun(high)/MITFlow phenotype, possibly associated with immunosuppression, which contrasted with a c-Jun(low)/MITFhigh phenotype of T cell-edited tumor cells derived from late metastases. In summary, our work shows how tumor recurrences after long-term latency evolve toward T-cell resistance by independent genetic events, as a means for immune escape and immunotherapeutic resistance. (C) 2016 AACR.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available