4.7 Article

Sequential Glycosylation of Proteins with Substrate-Specific N-Glycosyltransferases

Journal

ACS CENTRAL SCIENCE
Volume 6, Issue 2, Pages 144-154

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acscentsci.9b00021

Keywords

-

Funding

  1. Soft and Hybrid Nanotechnology Experimental (SHyNE) Resource [NSF ECCS-1542205]
  2. State of Illinois
  3. International Institute for Nano-technology (IIN)
  4. Defense Threat Reduction Agency [HDTRA1-15-10052/P00001]
  5. David and Lucile Packard Foundation
  6. Dreyfus Teacher-Scholar Program
  7. National Science Foundation [DGE-1324585, MCB-1413563]

Ask authors/readers for more resources

Protein glycosylation is a common post-translational modification that influences the functions and properties of proteins. Despite advances in methods to produce defined glycoproteins by chemoenzymatic elaboration of monosaccharides, the understanding and engineering of glycoproteins remain challenging, in part, due to the difficulty of site-specifically controlling glycosylation at each of several positions within a protein. Here, we address this limitation by discovering and exploiting the unique, conditionally orthogonal peptide acceptor specificities of N-glycosyltransferases (NGTs). We used cell-free protein synthesis and mass spectrometry of self-assembled monolayers to rapidly screen 41 putative NGTs and rigorously characterize the unique acceptor sequence preferences of four NGT variants using 1254 acceptor peptides and 8306 reaction conditions. We then used the optimized NGT-acceptor sequence pairs to sequentially install monosaccharides at four sites within one target protein. This strategy to site-specifically control the installation of N-linked monosaccharides for elaboration to a variety of functional N-glycans overcomes a major limitation in synthesizing defined glycoproteins for research and therapeutic applications.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available