4.5 Article

Latency and Reliability-Aware Workload Assignment in IoT Networks With Mobile Edge Clouds

Journal

IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT
Volume 16, Issue 4, Pages 1435-1449

Publisher

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TNSM.2019.2946467

Keywords

Reliability; Internet of Things; 5G mobile communication; Task analysis; Energy consumption; Cloud computing; Internet of Things; mobile edge computing; ultra reliable low latency communications; 5G; optimization; workload assignment

Funding

  1. NSERC
  2. Concordia University

Ask authors/readers for more resources

Along with the dramatic increase in the number of IoT devices, different IoT services with heterogeneous QoS requirements are evolving with the aim of making the current society smarter and more connected. In order to deliver such services to the end users, the network infrastructure has to accommodate the tremendous workload generated by the smart devices and their heterogeneous and stringent latency and reliability requirements. This would only be possible with the emergence of ultra reliable low latency communications (uRLLC) promised by 5G. Mobile Edge Computing (MEC) has emerged as an enabling technology to help with the realization of such services by bringing the remote computing and storage capabilities of the cloud closer to the users. However, integrating uRLLC with MEC would require the network operator to efficiently map the generated workloads to MEC nodes along with resolving the trade-off between the latency and reliability requirements. Thus, we study in this paper the problem of Workload Assignment (WA) and formulate it as a Mixed Integer Program (MIP) to decide on the assignment of the workloads to the available MEC nodes. Due to the complexity of the WA problem, we decompose the problem into two subproblems; Reliability Aware Candidate Selection (RACS) and Latency Aware Workload Assignment (LAWA-MIP). We evaluate the performance of the decomposition approach and propose a more scalable approach; Tabu meta-heuristic (WA-Tabu). Through extensive numerical evaluation, we analyze the performance and show the efficiency of our proposed approach under different system parameters.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available