4.7 Article

Large-scale optical phased array using a low-power multi-pass silicon photonic platform

Journal

OPTICA
Volume 7, Issue 1, Pages 3-6

Publisher

OPTICAL SOC AMER
DOI: 10.1364/OPTICA.7.000003

Keywords

-

Categories

Funding

  1. Defense Advanced Research Projects Agency [HR0011-16-C-0107]

Ask authors/readers for more resources

Optical phased arrays are a promising beam-steering technology for ultra-small solid-state lidar and free-space communication systems. Long-range, high-performance arrays require a large beam emission area densely packed with thousands of actively phase-controlled, power-hungry light emitting elements. To date, such large-scale phased arrays have been impossible to realize since current demonstrated technologies would operate at untenable electrical power levels. Here we show a multi-pass photonic platform integrated into a large-scale phased array that lowers phase shifter power consumption by nearly 9 times. The multi-pass structure decreases the power consumption of a thermo-optic phase shifter to a P-pi of 1.7 mW/pi without sacrificing speed or optical bandwidth. Using this platform, we demonstrate a silicon photonic phased array containing 512 actively controlled elements, consuming only 1.9 W of power while performing 2D beam steering over a 70 degrees x 6 degrees field of view. Our results demonstrate a path forward to building scalable phased arrays containing thousands of active elements. (C) 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available