4.8 Article

Contrasting trends of PM2.5 and surface-ozone concentrations in China from 2013 to 2017

Journal

NATIONAL SCIENCE REVIEW
Volume 7, Issue 8, Pages 1331-1339

Publisher

OXFORD UNIV PRESS
DOI: 10.1093/nsr/nwaa032

Keywords

air pollution; clean-air action; particulate matter; surface ozone; China; chemical composition

Funding

  1. Ministry of Science and Technology of China [2017YFC0210000]
  2. National Research Program for Key Issues in Air-pollution Control [DQGG0101]
  3. Beijing Major Science and Technology Project [Z181100005418014]

Ask authors/readers for more resources

Although much attention has been paid to investigating and controlling air pollution in China, the trends of air-pollutant concentrations on a national scale have remained unclear. Here, we quantitatively investigated the variation of air pollutants in China using long-term comprehensive data sets from 2013 to 2017, during which Chinese government made major efforts to reduce anthropogenic emission in polluted regions. Our results show a significant decreasing trend in the PM2.5 concentration in heavily polluted regions of eastern China, with an annual decrease of similar to 7% compared with measurements in 2013. The measured decreased concentrations of SO2, NO2 and CO (a proxy for anthropogenic volatile organic compounds) could explain a large fraction of the decreased PM2.5 concentrations in different regions. As a consequence, the heavily polluted days decreased significantly in corresponding regions. Concentrations of organic aerosol, nitrate, sulfate, ammonium and chloride measured in urban Beijing revealed a remarkable reduction from 2013 to 2017, connecting the decreases in aerosol precursors with corresponding chemical components closely. However, surface-ozone concentrations showed increasing trends in most urban stations from 2013 to 2017, which indicates stronger photochemical pollution. The boundary-layer height in capital cities of eastern China showed no significant trends over the Beijing-Tianjin-Hebei, Yangtze River Delta and Pearl River Delta regions from 2013 to 2017, which confirmed the reduction in anthropogenic emissions. Our results demonstrated that the Chinese government was successful in the reduction of particulate matter in urban areas from 2013 to 2017, although the ozone concentration has increased significantly, suggesting a more complex mechanism of improving Chinese air quality in the future.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available