4.6 Article

Deformability of Bisphenol A-Type Epoxy Resin-Based Polymer Concrete with Different Hardeners and Fillers

Journal

APPLIED SCIENCES-BASEL
Volume 10, Issue 4, Pages -

Publisher

MDPI
DOI: 10.3390/app10041336

Keywords

epoxy resin concrete; deformability; compatibility; dimensional stability; modulus of elasticity; setting shrinkage; thermal expansion

Ask authors/readers for more resources

This study experimentally investigated the deformability characteristics of bisphenol A-type epoxy resin-based polymer concrete produced using two types of hardener and four types of filler. In particular, the basic properties of epoxy resin polymer concrete, including the modulus of elasticity, setting shrinkage, and thermal expansion, were experimentally investigated to obtain basic data for evaluating compatibility and dimensional stability. The properties of the epoxy resin polymer concrete were determined when different types of hardener and filler were employed. Differences in deformability can be identified based on these properties. In the present study, the setting shrinkage, coefficient of thermal expansion, and modulus of elasticity were lowest when fly ash was employed as one of the four fillers. Hence, it is advantageous to use fly ash as a repair material for ordinary Portland cement concrete structures. Therefore, the results of this study will be helpful when selecting the types of hardener and filler needed to tailor the epoxy resin polymer concrete produced to be suitable for a particular application.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available