4.6 Article

Comparison of Convolutional Neural Network Architectures for Classification of Tomato Plant Diseases

Journal

APPLIED SCIENCES-BASEL
Volume 10, Issue 4, Pages -

Publisher

MDPI
DOI: 10.3390/app10041245

Keywords

tomato plant diseases; deep learning; convolutional neural networks; classification

Ask authors/readers for more resources

Tomato plants are highly affected by diverse diseases. A timely and accurate diagnosis plays an important role to prevent the quality of crops. Recently, deep learning (DL), specifically convolutional neural networks (CNNs), have achieved extraordinary results in many applications, including the classification of plant diseases. This work focused on fine-tuning based on the comparison of the state-of-the-art architectures: AlexNet, GoogleNet, Inception V3, Residual Network (ResNet) 18, and ResNet 50. An evaluation of the comparison was finally performed. The dataset used for the experiments is contained by nine different classes of tomato diseases and a healthy class from PlantVillage. The models were evaluated through a multiclass statistical analysis based on accuracy, precision, sensitivity, specificity, F-Score, area under the curve (AUC), and receiving operating characteristic (ROC) curve. The results present significant values obtained by the GoogleNet technique, with 99.72% of AUC and 99.12% of sensitivity. It is possible to conclude that this significantly success rate makes the GoogleNet model a useful tool for farmers in helping to identify and protect tomatoes from the diseases mentioned.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available