4.8 Review

Z-Scheme Photocatalytic Systems for Solar Water Splitting

Journal

ADVANCED SCIENCE
Volume 7, Issue 7, Pages -

Publisher

WILEY
DOI: 10.1002/advs.201903171

Keywords

artificial photosynthesis; electron mediators; hydrogen; water splitting; Z-scheme

Funding

  1. Ministry of Education (MOE) Malaysia under Fundamental Research Grant Scheme (FRGS)-Malaysia Research Star Award (MRSA) [FRGS-MRSA/1/2018/TK02/MUSM/01/1]

Ask authors/readers for more resources

As the world decides on the next giant step for the renewable energy revolution, scientists have begun to reinforce their headlong dives into the exploitation of solar energy. Hitherto, numerous attempts are made to imitate the natural photosynthesis of plants by converting solar energy into chemical fuels which resembles the Z-scheme process. A recreation of this system is witnessed in artificial Z-scheme photocatalytic water splitting to generate hydrogen (H-2). This work outlines the recent significant implication of the Z-scheme system in photocatalytic water splitting, particularly in the role of electron mediator and the key factors that improve the photocatalytic performance. The Review begins with the fundamental rationales in Z-scheme water splitting, followed by a survey on the development roadmap of three different generations of Z-scheme system: 1) PS-A/D-PS (first generation), 2) PS-C-PS (second generation), and 3) PS-PS (third generation). Focus is also placed on the scaling up of the leaf-to-tree challenge of Z-scheme water splitting system, which is also known as Z-scheme photocatalyst sheet. A detailed investigation of the Z-scheme system for achieving H-2 evolution from past to present accompanied with in-depth discussion on the key challenges in the area of Z-scheme photocatalytic water splitting are provided.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available