4.4 Article

Recovery of Nitrogen and Phosphorus Nutrition from Anaerobic Digestate by Natural Superabsorbent Fiber-Based Adsorbent and Reusing as an Environmentally Friendly Slow-Release Fertilizer for Horticultural Plants

Journal

WASTE AND BIOMASS VALORIZATION
Volume 11, Issue 10, Pages 5223-5237

Publisher

SPRINGER
DOI: 10.1007/s12649-019-00915-3

Keywords

Resource recovery; Bio-fertilizer; Water absorbency; Impregnation; Soil microbial communities; Pyrosequencing

Funding

  1. National Research Foundation, Prime Minister's Office, Singapore under its Campus for Research Excellence and Technological Enterprise (CREATE) Programme

Ask authors/readers for more resources

Purpose To help minimize the negative impact of chemical fertilizers on the environment, recycle nitrogen and phosphorus nutrients of anaerobic digestate and reduce loss of nutrients via leaching, an eco-friendly slow-release fertilizer was prepared through recovery of nitrogen and phosphorus nutrition from digestate using superabsorbent fibers extracted from soybean curd residue as an adsorbent. Methods The preparation method was proposed, and the fiber composite-based adsorbent was characterized by Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), and scanning electron microscope (SEM) techniques. Results The successful incorporation of N and P into the fiber composite-based adsorbent via adsorption was confirmed by results of these analyses. The prepared fertilizer showed a relatively high N content (3.65 wt%) and a limited P content (0.14 wt%). Also, the swelling capacity as well as water retention capability of the obtained fiber composite-based adsorbent were evaluated. The release behavior of N and P from impregnated fiber composites was examined and was found to be partially in good accordance with the standard of the Committee of European Normalization, showing good slow-release and water-retention properties. Furthermore, in order to assess the fertilizer quality of the prepared materials, the effects of different fertilizers (commercially available fertilizer and prepared slow-release fertilizer) on tomato plant growth and soil microbial communities were investigated. Conclusions The obtained results demonstrated the potential of fiber composite-based slow-release fertilizer system for recycling N and P nutrition from digestate, improving the effectiveness of fertilizer as well as protecting the environment. [GRAPHICS] .

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available