4.5 Article

Acoustic Hologram Enhanced Phased Arrays for Ultrasonic Particle Manipulation

Journal

PHYSICAL REVIEW APPLIED
Volume 12, Issue 6, Pages -

Publisher

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevApplied.12.064055

Keywords

-

Funding

  1. U.K. Engineering and Physical Sciences Research Council
  2. Max Planck Society (MPG-FhG project)
  3. Ultraleap Ltd.
  4. EPSRC [1939785] Funding Source: UKRI

Ask authors/readers for more resources

The ability to shape ultrasound fields is important for particle manipulation, medical therapeutics, and imaging applications. If the amplitude and/or phase is spatially varied across the wave front, then it is possible to project acoustic images. When attempting to form an arbitrary desired static sound field, acoustic holograms are superior to phased arrays due to their significantly higher phase fidelity. However, they lack the dynamic flexibility of phased arrays. Here, we demonstrate how to combine the high-fidelity advantages of acoustic holograms with the dynamic control of phased arrays in the ultrasonic frequency range. Holograms are used with a 64-element phased array, driven with continuous excitation. Movement of the position of the projected hologram via phase delays that steer the output beam is demonstrated experimentally. This allows the creation of a much more tightly focused point than with the phased array alone, while still being reconfigurable. It also allows the complex movement at a water-air interface of a phase surfer along a phase track or the manipulation of a more arbitrarily shaped particle via amplitude traps. Furthermore, a particle manipulation device with two emitters and a single split hologram is demon-strated that allows the positioning of a phase surfer along a one-dimensional axis. This paper opens the door for new applications with complex manipulation of ultrasound while minimizing the complexity and cost of the apparatus.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available