4.3 Article

Modelling malaria dynamics with partial immunity and protected travellers: optimal control and cost-effectiveness analysis

Journal

JOURNAL OF BIOLOGICAL DYNAMICS
Volume 14, Issue 1, Pages 90-115

Publisher

TAYLOR & FRANCIS LTD
DOI: 10.1080/17513758.2020.1722265

Keywords

Malaria model; temporary immunity; protected travellers; optimal control; cost-effective analysis

Funding

  1. National Research Foundation (NRF), South Africa [115029, 115524]

Ask authors/readers for more resources

A mathematical model of malaria dynamics with naturally acquired transient immunity in the presence of protected travellers is presented. The qualitative analysis carried out on the autonomous model reveals the existence of backward bifurcation, where the locally asymptotically stable malaria-free and malaria-present equilibria coexist as the basic reproduction number crosses unity. The increased fraction of protected travellers is shown to reduce the basic reproduction number significantly. Particularly, optimal control theory is used to analyse the non-autonomous model, which incorporates four control variables. The existence result for the optimal control quadruple, which minimizes malaria infection and costs of implementation, is explicitly proved. Effects of combining at least any three of the control variables on the malaria dynamics are illustrated. Furthermore, the cost-effectiveness analysis is carried out to reveal the most cost-effective strategy that could be implemented to prevent and control the spread of malaria with limited resources.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available