4.6 Article

Electrochemical Oxidation of an Organic Dye Adsorbed on Tin Oxide and Antimony Doped Tin Oxide Graphene Composites

Journal

CATALYSTS
Volume 10, Issue 2, Pages -

Publisher

MDPI
DOI: 10.3390/catal10020263

Keywords

graphene; tin oxide; antimony doped tin oxide; adsorption; electrochemical oxidation

Funding

  1. Natural Sciences and Engineering Research Council of Canada (NSERC) [435634-2013, RGPIN-2018-03725]
  2. Canada Foundation for Innovation (CFI) [32613]

Ask authors/readers for more resources

Electrochemical regeneration suffers from low regeneration efficiency due to side reactions like oxygen evolution, as well as oxidation of the adsorbent. In this study, electrically conducting nanocomposites, including graphene/SnO2 (G/SnO2) and graphene/Sb-SnO2 (G/Sb-SnO2) were successfully synthesized and characterized using nitrogen adsorption, scanning electron microscopy, transmission electron microscopy, and Raman spectroscopy. Thereafter, the adsorption and electrochemical regeneration performance of the nanocomposites were tested using methylene blue as a model contaminant. Compared to bare graphene, the adsorption capacity of the new composites was <= 40% higher, with similar isotherm behavior. The adsorption capacity of G/SnO2 and G/Sb-SnO2 were effectively regenerated in both NaCl and Na2SO4 electrolytes, requiring as little charge as 21 C mg(-1) of adsorbate for complete regeneration, compared to >35 C mg(-1) for bare graphene. Consecutive loading and anodic electrochemical regeneration cycles of the nanocomposites were carried out in both NaCl and Na2SO4 electrolytes without loss of the nanocomposite, attaining high regeneration efficiencies (ca. 100%).

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available