4.6 Article

Quantifying Nanoscale Electromagnetic Fields in Near-Field Microscopy by Fourier Demodulation Analysis

Journal

ACS PHOTONICS
Volume 7, Issue 2, Pages 344-351

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acsphotonics.9b01533

Keywords

scattering-type SNOM; mid-infrared; nanoscopy; tomography; finite element method; demodulated fields

Funding

  1. European Research Council [305003]
  2. Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) [314695032 -SFB 1277, HU1598/3, CO1492]
  3. European Research Council (ERC) [305003] Funding Source: European Research Council (ERC)

Ask authors/readers for more resources

Confining light to sharp metal tips has become a versatile technique to study optical and electronic properties far below the diffraction limit. Particularly near-field microscopy in the mid-infrared spectral range has found a variety of applications in probing nanostructures and their dynamics. Yet, the ongoing quest for ultimately high spatial resolution down to the single-nanometer regime and quantitative three-dimensional nano-tomography depends vitally on a precise knowledge of the spatial distribution of the near fields emerging from the probe. Here, we perform finite element simulations of a tip with realistic geometry oscillating above a dielectric sample. By introducing a novel Fourier demodulation analysis of the electric field at each point in space, we reliably quantify the distribution of the near fields above and within the sample. Besides inferring the lateral field extension, which can be smaller than the tip radius of curvature, we also quantify the probing volume within the sample. Finally, we visualize the scattering process into the far field at a given demodulation order, for the first time, and shed light onto the nanoscale distribution of the near fields, and its evolution as the tip-sample distance is varied. Our work represents a crucial step in understanding and tailoring the spatial distribution of evanescent fields in optical nanoscopy.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available