4.6 Article

Study of the Effects of Vent Configuration on Mono-Span Greenhouse Ventilation Using Computational Fluid Dynamics

Journal

SUSTAINABILITY
Volume 12, Issue 3, Pages -

Publisher

MDPI
DOI: 10.3390/su12030986

Keywords

greenhouse; computational fluid dynamics; air-flow; temperature; humidity; sustainability

Funding

  1. British Council (BC) of UK [332435306]
  2. Science & Technology Development Fund (STDF) of Egypt [30771]

Ask authors/readers for more resources

The rise in the human population, its density and scarcity of resources require cost-effective solutions for sustainable energy and water resources. Smart and sustainable agriculture is one important factor for future green cities to tackle climate change as a cost-effective solution to save energy and water. However, greenhouses (GH) require consistent ventilation due to their internal temperatures, and this can be an energy-intensive operation. Therefore, it is necessary to analyse the potential factors involved. In this study, the effect of vent configuration of a mono-span greenhouse with roof and side vents at low wind speeds was investigated using computational fluid dynamics (CFD). The validated simulations were then performed on different models to analyse the effects of the vents' locations on the ventilation requirements. The side vents were found to contribute most to the ventilation. The position of the side vent was found to affect the convection loop in the greenhouse and the air velocity at the plant level. The humidity was shown to be highest under the windward side vent. The roof vent was found to affect the temperature and air velocity in the roof of the greenhouse but had very little effect on the distributions at the plant level.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available