4.6 Article

Dynamical Control of Broadband Coherent Absorption in ENZ Films

Journal

MICROMACHINES
Volume 11, Issue 1, Pages -

Publisher

MDPI
DOI: 10.3390/mi11010110

Keywords

transparent conductive oxide; coherent perfect absorption; epsilon-near-zero media; light-with-light modulation; refractive index change

Funding

  1. EPSRC (UK) [EP/M009122/1]
  2. U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering [DE-SC0017717]
  3. Air Force Office of Scientific Research (AFOSR) [FA9550-18-1-0002]
  4. U.S. Office of Naval Research
  5. EPSRC [EP/M009122/1, EP/P019994/1] Funding Source: UKRI

Ask authors/readers for more resources

Interferometric effects between two counter-propagating beams incident on an optical system can lead to a coherent modulation of the absorption of the total electromagnetic radiation with 100% efficiency even in deeply subwavelength structures. Coherent perfect absorption (CPA) rises from a resonant solution of the scattering matrix and often requires engineered optical properties. For instance, thin film CPA benefits from complex nanostructures with suitable resonance, albeit at a loss of operational bandwidth. In this work, we theoretically and experimentally demonstrate a broadband CPA based on light-with-light modulation in epsilon-near-zero (ENZ) subwavelength films. We show that unpatterned ENZ films with different thicknesses exhibit broadband CPA with a near-unity maximum value located at the ENZ wavelength. By using Kerr optical nonlinearities, we dynamically tune the visibility and peak wavelength of the total energy modulation. Our results based on homogeneous thick ENZ media open a route towards on-chip devices that require efficient light absorption and dynamical tunability.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available