4.2 Article

Grand Minima in a spherical non-kinematic α2ω mean-field dynamo model

Journal

Publisher

EDP SCIENCES S A
DOI: 10.1051/swsc/2020006

Keywords

Solar cycle; solar dynamo; Grand Minima

Funding

  1. Natural Sciences and Engineering Research Council of Canada
  2. Fond Quebecois pour la Recherche -Nature et Technologie
  3. Canadian Foundation for Innovation

Ask authors/readers for more resources

We present a non-kinematic axisymetric alpha(2)omega mean-field dynamo model in which the complete alpha-tensor and mean differential rotation profile are both extracted from a global magnetohydrodynamical simulation of solar convection producing cycling large-scale magnetic fields. The nonlinear backreaction of the Lorentz force on differential rotation is the only amplitude-limiting mechanism introduced in the mean-field model. We compare and contrast the amplitude modulation patterns characterizing this mean-field dynamo, to those already well-studied in the context of non-kinematic alpha omega models using a scalar alpha-effect. As in the latter, we find that large quasi-periodic modulation of the primary cycle are produced at low magnetic Prandtl number (Pm), with the ratio of modulation period to the primary cycle period scaling inversely with Pm. The variations of differential rotation remain well within the bounds set by observed solar torsional oscillations. In this low-Pm regime, moderately supercritical solutions can also exhibit aperiodic Maunder Minimum-like periods of strongly reduced cycle amplitude. The inter-event waiting time distribution is approximately exponential, in agreement with solar activity reconstructions based on cosmogenic radioisotopes. Secular variations in low-latitude surface differential rotation during Grand Minima, as compared to epochs of normal cyclic behavior, are commensurate in amplitude with historical inferences based on sunspot drawings. Our modeling results suggest that the low levels of observed variations in the solar differential rotation in the course of the activity cycle may nonetheless contribute to, or perhaps even dominate, the regulation of the magnetic cycle amplitude.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.2
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available