4.4 Article

Colliders and conformal interfaces

Journal

JOURNAL OF HIGH ENERGY PHYSICS
Volume -, Issue 2, Pages -

Publisher

SPRINGER
DOI: 10.1007/JHEP02(2020)138

Keywords

Boundary Quantum Field Theory; Conformal Field Theory; Conformal and W Symmetry; Field Theories in Lower Dimensions

Funding

  1. Simons Foundation [488649]
  2. Swiss National Science Foundation [200021-169132]
  3. Swiss National Science Foundation through National Centre of Competence in Research SwissMAP
  4. Swiss National Science Foundation (SNF) [200021_169132] Funding Source: Swiss National Science Foundation (SNF)

Ask authors/readers for more resources

We set up a scattering experiment of matter against an impurity which separates two generic one-dimensional critical quantum systems. We compute the flux of reflected and transmitted energy, thus defining a precise measure of the transparency of the interface between the related two-dimensional conformal field theories. If the largest symmetry algebra is Virasoro, we find that the reflection and transmission coefficients are independent of the details of the initial state, and are fixed in terms of the central charges and of the two-point function of the displacement operator. The situation is more elaborate when extended symmetries are present. Positivity of the total energy flux at infinity imposes bounds on the coefficient of the two-point function of the displacement operator, which controls the free-energy cost of a small deformation of the interface. Finally, we study out-of-equilibrium steady states of a critical system connecting two reservoirs at different temperatures. In the absence of extended symmetries, our result implies that the energy flux across an impurity is proportional to the difference of the squared temperatures and controlled by the reflection coefficient.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available