4.4 Article

Sequences of 6d SCFTs on generic Riemann surfaces

Journal

JOURNAL OF HIGH ENERGY PHYSICS
Volume -, Issue 1, Pages -

Publisher

SPRINGER
DOI: 10.1007/JHEP01(2020)086

Keywords

Field Theories in Higher Dimensions; Supersymmetric Gauge Theory; Supersymmetry and Duality

Funding

  1. Israel Science Foundation [2289/18]
  2. I-CORE Program of the Planning and Budgeting Committee

Ask authors/readers for more resources

We consider compactifications of 6d minimal (DN+3, DN+3) type conformal matter SCFTs on a generic Riemann surface. We derive the theories corresponding to three punctured spheres (trinions) with three maximal punctures, from which one can construct models corresponding to generic surfaces. The trinion models are simple quiver theories with N = 1 SU(2) gauge nodes. One of the three puncture non abelian symmetries is emergent in the IR. The derivation of the trinions proceeds by analyzing RG flows between conformal matter SCFTs with different values of N and relations between their subsequent reductions to 4d. In particular, using the flows we first derive trinions with two maximal and one minimal punctures, and then we argue that collections of N minimal punctures can be interpreted as a maximal one. This suggestion is checked by matching the properties of the 4d models such as 't Hooft anomalies, symmetries, and the structure of the conformal manifold to the expectations from 6d. We then use the understanding that collections of minimal punctures might be equivalent to maximal ones to construct trinions with three maximal punctures, and then 4d theories corresponding to arbitrary surfaces, for 6d models described by two M5 branes probing a Z(k) singularity. This entails the introduction of a novel type of maximal puncture. Again, the suggestion is checked by matching anomalies, symmetries and the conformal manifold to expectations from six dimensions. These constructions thus give us a detailed understanding of compactifications of two sequences of six dimensional SCFTs to four dimensions.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available