4.4 Article

Probing non-standard neutrino interactions with supernova neutrinos at Hyper-K

Journal

JOURNAL OF HIGH ENERGY PHYSICS
Volume -, Issue 1, Pages -

Publisher

SPRINGER
DOI: 10.1007/JHEP01(2020)179

Keywords

Beyond Standard Model; Neutrino Physics

Funding

  1. DoE [de-sc0007859]
  2. Leinweber Graduate Fellowship

Ask authors/readers for more resources

Non-standard neutrino self interactions (NSSI) could be stronger than Fermi interactions. We investigate the ability to constrain these four-neutrino interactions by their effect on the flux of neutrinos originating from a galactic supernova. In the dense medium of a core collapse supernova, these new self interactions can have a significant impact on neutrino oscillations, leading to changes at the flavor evolution and spectra level. We use simulations of the neutrino flux from a 13 solar mass, core collapse supernova at 10 kpc away, and numerically propagate these neutrinos through the stellar medium taking into account vacuum/MSW oscillations, SM nu - nu scattering as well as nu - nu interactions that arise from NSSI. We pass the resulting neutrino flux to a simulation of the future Hyper-Kamiokande detector to see what constraints on NSSI parameters are possible when the next galactic supernova becomes visible. We find that these constraints depend strongly on the neutrino mass hierarchy and if the NSSI is flavor-violating or preserving. Sensitivity to NSSI in the normal hierarchy (NH) at Hyper-K is limited by the experiment's ability to efficiently detect nu(e), but deviations from no NSSI could be seen if the NSSI is particularly strong. In the inverted hierarchy (IH) scenario, Hyper-K can significantly improve constraints on flavor-violating NSSI down to O(10(-1))G(F).

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available