4.8 Article

Loss of centromere function drives karyotype evolution in closely related Malassezia species

Journal

ELIFE
Volume 9, Issue -, Pages -

Publisher

ELIFE SCIENCES PUBLICATIONS LTD
DOI: 10.7554/eLife.53944

Keywords

-

Categories

Funding

  1. Department of Biotechnology, Ministry of Science and Technology Tata Innovation Fellowship [BT/HRT/35/01/03/2017]
  2. Department of Biotechnology, Ministry of Science and Technology [BT/INF/22/SP27679/2018]
  3. National Institutes of Health [AI39115-21, AI50113-15]
  4. Agency for Science, Technology and Research [H18/01a0/016]
  5. Jawaharlal Nehru Centre for Advanced Scientific Research Graduate student fellowship
  6. Science and Engineering Research Board [PDF/2016/002858]
  7. Jawaharlal Nehru Centre for Advanced Scientific Research

Ask authors/readers for more resources

Genomic rearrangements associated with speciation often result in variation in chromosome number among closely related species. Malassezia species show variable karyotypes ranging between six and nine chromosomes. Here, we experimentally identified all eight centromeres in M. sympodialis as 3-5-kb long kinetochore-bound regions that span an AT-rich core and are depleted of the canonical histone H3. Centromeres of similar sequence features were identified as CENP-A-rich regions in Malassezia furfur, which has seven chromosomes, and histone H3 depleted regions in Malassezia slooffiae and Malassezia globosa with nine chromosomes each. Analysis of synteny conservation across centromeres with newly generated chromosome-level genome assemblies suggests two distinct mechanisms of chromosome number reduction from an inferred nine-chromosome ancestral state: (a) chromosome breakage followed by loss of centromere DNA and (b) centromere inactivation accompanied by changes in DNA sequence following chromosome-chromosome fusion. We propose that AT-rich centromeres drive karyotype diversity in the Malassezia species complex through breakage and inactivation.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available