4.5 Article

Construction of dual nanomedicines for the imaging and alleviation of atherosclerosis

Journal

ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY
Volume 48, Issue 1, Pages 169-179

Publisher

TAYLOR & FRANCIS LTD
DOI: 10.1080/21691401.2019.1699823

Keywords

Molecular imaging; atherosclerosis; nanotherapy; profilin-1

Funding

  1. National Natural Science Foundation of China [81471659, 81630046]
  2. Science and Technology Project of Guangzhou [201805010002]

Ask authors/readers for more resources

Magnetic resonance imaging (MRI) is an essential tool for the diagnosis of atherosclerosis, a chronic cardiovascular disease. MRI primarily uses superparamagnetic iron oxide (SPIO) as a contrast agent. However, SPIO integrated with therapeutic drugs has rarely been studied. In this study, we explored biocompatible paramagnetic iron-oxide nanoparticles (NPs) in a complex with low pH-sensitive cyclodextrin for the diagnostic imaging and treatment of atherosclerosis. The NPs were conjugated with profilin-1 antibody (PFN1) to specifically target vascular smooth muscle cells (VSMCs) in the atherosclerotic plaque and integrated with the anti-inflammatory drug, rapamycin. The PFN1-CD-MNPs were easily binded to the VSMCs, indicating their good biocompatibility and low renal toxicity over the long term. Ex vivo near-infrared fluorescence (NIRF) imaging and in vivo MRI indicated the accumulation of PFN1-CD-MNPs in the atherosclerotic plaque. The RAP@PFN1-CD-MNPs alleviated the progression of arteriosclerosis. Thus, PFN1-CD-MNPs served not only as multifunctional imaging probes but also as nanovehicles for the treatment of atherosclerosis.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available