4.6 Article

PRH1 mediates ARF7-LBD dependent auxin signaling to regulate lateral root development in Arabidopsis thaliana

Journal

PLOS GENETICS
Volume 16, Issue 2, Pages -

Publisher

PUBLIC LIBRARY SCIENCE
DOI: 10.1371/journal.pgen.1008044

Keywords

-

Funding

  1. National Natural Science Foundation of China [31500227]
  2. Qingdao's Leading Technology Innovator Project
  3. Youth Interdisciplinary Science and Innovative Research Groups of Shandong University [2020QNQT014]
  4. Fundamental Research Funds of Shandong University [2016GN021]

Ask authors/readers for more resources

The development of lateral roots in Arabidopsis thaliana is strongly dependent on signaling directed by the AUXIN RESPONSE FACTOR7 (ARF7), which in turn activates LATERAL ORGAN BOUNDARIES DOMAIN (LBD) transcription factors (LBD16, LBD18 and LBD29). Here, the product of PRH1, a PR-1 homolog annotated previously as encoding a pathogen-responsive protein, was identified as a target of ARF7-mediated auxin signaling and also as participating in the development of lateral roots. PRH1 was shown to be strongly induced by auxin treatment, and plants lacking a functional copy of PRH1 formed fewer lateral roots. The transcription of PRH1 was controlled by the binding of both ARF7 and LBDs to its promoter region. Author summary In Arabidopsis thaliana AUXIN RESPONSE FACTOR7 (ARF7)-mediated auxin signaling plays a key role in lateral roots (LRs) development. The LATERAL ORGAN BOUNDARIES DOMAIN (LBD) transcription factors (LBD16, LBD18 and LBD29) act downstream of ARF7-mediated auxin signaling to control LRs formation. Here, the PR-1 homolog PRH1 was identified as a novel target of both ARF7 and LBDs (especially the LBD29) during auxin induced LRs formation, as both ARF7 and LBDs were able to bind to the PRH1 promoter. This study provides new insights about how auxin regulates lateral root development.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available