4.6 Article

Coacting enhancers can have complementary functions within gene regulatory networks and promote canalization

Journal

PLOS GENETICS
Volume 15, Issue 12, Pages -

Publisher

PUBLIC LIBRARY SCIENCE
DOI: 10.1371/journal.pgen.1008525

Keywords

-

Funding

  1. National Institute of Health [R35GM118146]
  2. American Heart Association [18POST34080493]

Ask authors/readers for more resources

Developmental genes are often regulated by multiple enhancers exhibiting similar spatio-temporal outputs, which are generally considered redundantly acting though few have been studied functionally. Using CRISPR-Cas9, we created deletions of two enhancers, brk5' and brk3', that drive similar but not identical expression of the gene brinker (brk) in early Drosophila embryos. Utilizing both in situ hybridization and quantitative mRNA analysis, we investigated the changes in the gene network state caused by the removal of one or both of the early acting enhancers. brk5' deletion generally phenocopied the gene mutant, including expansion of the BMP ligand decapentaplegic (dpp) as well as inducing variability in amnio-serosa tissue cell number suggesting a loss of canalization. In contrast, brk3' deletion presented unique phenotypes including dorsal expansion of several ventrally expressed genes and a decrease in amnioserosa cell number. Similarly, deletions were made for two enhancers associated with the gene short-gastrulation (sog), sog.int and sog.dist, demonstrating that they also exhibit distinct patterning phenotypes and affect canalization. In summary, this study shows that similar gene expression driven by coacting enhancers can support distinct, and sometimes complementary, functions within gene regulatory networks and, moreover, that phenotypes associated with individual enhancer deletion mutants can provide insight into new gene functions.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available