4.7 Article

Correlation of Field-Measured and Remotely Sensed Plant Water Status as a Tool to Monitor the Risk of Drought-Induced Forest Decline

Journal

FORESTS
Volume 11, Issue 1, Pages -

Publisher

MDPI
DOI: 10.3390/f11010077

Keywords

Fraxinus ornus; remote sensing; NDVI; NDWI; water stress; karst; water potential; RWC; water content

Categories

Funding

  1. University of Trieste [FRA 2018]

Ask authors/readers for more resources

Increased frequency of tree mortality and forest decline due to anomalous drought events calls for the adoption of effective monitoring of tree water status over large spatial and temporal scales. We correlated field-measured and remotely sensed plant water status parameters, to test the possibility of monitoring the risk of drought-induced dehydration and hydraulic failure using satellite images calibrated on reliable physiological indicators of tree hydraulics. The study was conducted during summer 2019 in the Karst plateau (NE Italy) in a woodland dominated by Fraxinus ornus L.; Sentinel-2 images were acquired on a seasonal scale on the same dates when absolute water content (AbWC), relative water content (RWC), and minimum water potential (Psi(min)) were measured in the field. Plant water status parameters were correlated with normalized difference vegetation index (NDVI and NDVI 8A), normalized difference water index (NDWI), and soil-adjusted vegetation index (SAVI). Significant Pearson and Spearman linear correlations (alpha < 0.05) emerged between all tree-level measured variables and NDWI, while for NDVI, NDVI 8A, and SAVI no correlation was found. Our results suggest the possibility of using the NDWI as a proxy of tree water content and water potential.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available