4.5 Article

Small mammal species richness and turnover along elevational gradient in Yulong Mountain, Yunnan, Southwest China

Journal

ECOLOGY AND EVOLUTION
Volume 10, Issue 5, Pages 2545-2558

Publisher

WILEY
DOI: 10.1002/ece3.6083

Keywords

elevational gradients; Hengduan Mountain; small mammals; species turnover; the energy hypothesis; the mid-domain effect

Funding

  1. National Key Research and Development Program of China [2017YFC0505200]
  2. Natural Science Foundation of the Anhui Higher Education Institutions [KJ2019A0486]
  3. National Natural Science Foundation of China [31900318]

Ask authors/readers for more resources

Understanding the species diversity patterns along elevational gradients is critical for biodiversity conservation in mountainous regions. We examined the elevational patterns of species richness and turnover, and evaluated the effects of spatial and environmental factors on nonvolant small mammals (hereafter small mammal) predicted a priori by alternative hypotheses (mid-domain effect [MDE], species-area relationship [SAR], energy, environmental stability, and habitat complexity]) proposed to explain the variation of diversity. We designed a standardized sampling scheme to trap small mammals at ten elevational bands across the entire elevational gradient on Yulong Mountain, southwest China. A total of 1,808 small mammals representing 23 species were trapped. We observed the hump-shaped distribution pattern of the overall species richness along elevational gradient. Insectivores, rodents, large-ranged species, and endemic species richness showed the general hump-shaped pattern but peaked at different elevations, whereas the small-ranged species and endemic species favored the decreasing richness pattern. The MDE and the energy hypothesis were supported, whereas little support was found for the SAR, the environmental stability hypothesis, and the habitat complexity. However, the primary driver(s) for richness patterns differed among the partitioning groups, with NDVI (the normalized difference vegetation index) and MDE being the most important variables for the total richness pattern. Species turnover for all small mammal groups increased with elevation, and it supported a decrease in community similarity with elevational distance. Our results emphasized for increased conservation efforts in the higher elevation regions of the Yulong Mountain.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available