4.7 Article

Neurovascular effects of umbilical cord blood-derived stem cells in growth-restricted newborn lambs UCBCs for perinatal brain injury

Journal

STEM CELL RESEARCH & THERAPY
Volume 11, Issue 1, Pages -

Publisher

BMC
DOI: 10.1186/s13287-019-1526-0

Keywords

Brain injury; Intrauterine growth restriction; IUGR; FGR; Preterm; Ventilation

Funding

  1. NHMRC [APP1160393, APP1136216, APP1105525]
  2. Cerebral Palsy Alliance Research Grant [PG0414]
  3. Royal Australasian College of Physicians Research Fellowship
  4. Victorian Government's Operational Infrastructure Program

Ask authors/readers for more resources

Background Neonatal ventilation exacerbates brain injury in lambs with fetal growth restriction (FGR), characterized by neuroinflammation and reduced blood-brain barrier integrity, which is normally maintained by the neurovascular unit. We examined whether umbilical cord blood stem cell (UCBC) treatment stabilized the neurovascular unit and reduced brain injury in preterm ventilated FGR lambs. Methods Surgery was performed in twin-bearing pregnant ewes at 88 days' gestation to induce FGR in one fetus. At 127 days, FGR and appropriate for gestational age (AGA) lambs were delivered, carotid artery flow probes and umbilical lines inserted, lambs intubated and commenced on gentle ventilation. Allogeneic ovine UCBCs (25 x 10(6) cells/kg) were administered intravenously to lambs at 1 h of life. Lambs were ventilated for 24 h and then euthanized. Results FGR (n = 6) and FGR+UCBC (n = 6) lambs were growth restricted compared to AGA (n = 6) and AGA+UCBC (n = 6) lambs (combined weight, FGR 2.3 +/- 0.4 vs. AGA 3.0 +/- 0.3 kg; p = 0.0002). UCBC therapy did not alter mean arterial blood pressure or carotid blood flow but decreased cerebrovascular resistance in FGR+UCBC lambs. Circulating TNF-alpha cytokine levels were lower in FGR+UCBC vs. FGR lambs (p < 0.05). Brain histopathology showed decreased neuroinflammation and oxidative stress, increased endothelial cell proliferation, pericyte stability, and greater integrity of the neurovascular unit in FGR+UCBC vs. FGR lambs. Conclusions Umbilical cord blood stem cell therapy mitigates perinatal brain injury due to FGR and ventilation, and the neuroprotective benefits may be mediated by stabilization of the neurovascular unit.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available