4.7 Article

Carbon nanotubes promote cell migration in hydrogels

Journal

SCIENTIFIC REPORTS
Volume 10, Issue 1, Pages -

Publisher

NATURE PUBLISHING GROUP
DOI: 10.1038/s41598-020-59463-9

Keywords

-

Funding

  1. National Institute on Deafness and other Communication Disorders (NIDCD), NIH [R01-DC005788]
  2. McGill Engineering Doctoral Award (MEDA)
  3. Canadian Foundation for Innovation

Ask authors/readers for more resources

Injectable hydrogels are increasingly used for in situ tissue regeneration and wound healing. Ideally, an injectable implant should promote the recruitment of cells from the surrounding native tissue and allow cells to migrate freely as they generate a new extracellular matrix network. Nanocomposite hydrogels such as carbon nanotube (CNT)-loaded hydrogels have been hypothesized to promote cell recruitment and cell migration relative to unloaded ones. To investigate this, CNT-glycol chitosan hydrogels were synthesized and studied. Chemoattractant-induced cell migration was studied using a modified Boyden Chamber experiment. Migrated cells were counted using flow cytometry. Cell adhesion was inferred from the morphology of the cells via an image segmentation method. Cell migration and recruitment results confirmed that small concentrations of CNT significantly increase cell migration in hydrogels, thereby accelerating tissue regeneration and wound healing in situations where there is insufficient migration in the unloaded matrix.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available