4.7 Article

Antiviral activity of iridoid glycosides extracted from Fructus Gardeniae against influenza A virus by PACT-dependent suppression of viral RNA replication

Journal

SCIENTIFIC REPORTS
Volume 10, Issue 1, Pages -

Publisher

NATURE PUBLISHING GROUP
DOI: 10.1038/s41598-020-58443-3

Keywords

-

Funding

  1. National Natural Science Foundation of China [81773977, 81303290]
  2. China Basic Research Projects of China Academy of Chinese Medical Sciences [ZZ0908034]

Ask authors/readers for more resources

Epidemic and pandemic influenza A virus (IAV) poses a significant threat to human populations worldwide. Iridoid glycosides are principal bioactive components from the Gardenia jasminoides J. Ellis fruit that exhibit antiviral activity against several strains of IAV. In the present study, we evaluated the protective effect of Fructus Gardeniae iridoid glycoside extracts (IGEs) against IAV by cytopathogenic effect(CPE), MTT and a plaque formation assay in vitro and examined the reduction in the pulmonary index (PI), restoration of body weight, reduction in mortality and increases in survival time in vivo. As a host factor, PACT provides protection against the pathogenic influenza A virus by interacting with IAV polymerase and activating the IFN-I response. To verify the whether IGEs suppress IAV replication in a PACT-dependent manner, IAV RNA replication, expression of PACT and the phosphorylation of eIF2 alpha in A549 cells were detected; the levels of IFN beta, PACT and PKR in mouse lung tissues were determined; and the activity of IAV polymerase was evaluated in PACT-compromised cells. The results indicated that IGEs sufficiently alleviated cell damage and suppressed IAV replication in vitro, protecting mice from IAV-induced injury and lethal IAV infection. These anti-IAV effects might be related to disrupted interplay between IVA polymerase and PACT and/or prevention of a PACT-dependent overactivated IFN-I antiviral response. Taken together, our findings reveal a new facet of the mechanisms by which IGEs fight the influenza A virus in a PACT-dependent manner.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available