4.7 Article

Parkinson patients without tremor show changed patterns of mechanical muscle oscillations during a specific bilateral motor task compared to controls

Journal

SCIENTIFIC REPORTS
Volume 10, Issue 1, Pages -

Publisher

NATURE PUBLISHING GROUP
DOI: 10.1038/s41598-020-57766-5

Keywords

-

Funding

  1. Brandenburgischer Verein fur Gesunheitsforderung e.V.
  2. Deutsche Forschungsgemeinschaft
  3. Open Access Publishing Fund of University of Potsdam

Ask authors/readers for more resources

The pathophysiology of Parkinson's disease (PD) is still not understood. There are investigations which show a changed oscillatory behaviour of brain circuits or changes in variability of, e.g., gait parameters in PD. The aim of this study was to investigate whether or not the motor output differs between PD patients and healthy controls. Thereby, patients without tremor are investigated in the medication off state performing a special bilateral isometric motor task. The force and accelerations (ACC) were recorded as well as the Mechanomyography (MMG) of the biceps brachii, the brachioradialis and of the pectoralis major muscles using piezoelectric-sensors during the bilateral motor task at 60% of the maximal isometric contraction. The frequency, a specific power ratio, the amplitude variation and the slope of amplitudes were analysed. The results indicate that the oscillatory behaviour of motor output in PD patients without tremor deviates from controls: thereby, the 95%-confidence-intervals of power ratio and of amplitude variation of all signals are disjoint between PD and controls and show significant differences in group comparisons (power ratio: p = 0.000-0.004, r = 0.441-0.579; amplitude variation: p = 0.000-0.001, r = 0.37-0.67). The mean frequency shows a significant difference for ACC (p = 0.009, r = 0.43), but not for MMG. It remains open, whether this muscular output reflects changes of brain circuits and whether the results are reproducible and specific for PD.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available