4.7 Article

Ultrafast electrical switching of nanostructured metadevice with dual-frequency liquid crystal

Journal

SCIENTIFIC REPORTS
Volume 9, Issue -, Pages -

Publisher

NATURE PUBLISHING GROUP
DOI: 10.1038/s41598-019-55656-z

Keywords

-

Funding

  1. National Science Center [UMO-2015/17/D/ST8/02428]
  2. MUT University [PBS 23-896]

Ask authors/readers for more resources

Shortening of switching times of various soft-matter-based tunable metamaterials is one of the key challenges to improve the functionality of modern active devices. Here we show an effective strategy in the evolution of soft-matter-based tunable metamaterials that makes possible acceleration of both on and off switching processes by using a dual-frequency liquid crystal mixture. The frequency-convertible dielectric anisotropy of the dual-frequency mixture enabled us to create a fast-response in-plane switching metasurface at the nanoscale, which could be tuned by an electrical signal with different frequencies. The results clearly show that the resonance of the metamaterial can be continuously and reversibly controlled within a wavelength range of 100 nm as the applied frequency is inverted between 1 kHz and 40 kHz, with a total response time (tau = tau(ON) + tau(OFF)) of 1.89 ms. Furthermore, experimental characteristics of the hybrid metamaterial are in great agreement with numerical calculations, which allow us to anticipate active epsilon-near-zero behavior of the metadevice. This work indicates the future development direction of liquid-crystal-based active plasmonic systems.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available