4.7 Article

Transferred monolayer MoS2 onto GaN for heterostructure photoanode: Toward stable and efficient photoelectrochemical water splitting

Journal

SCIENTIFIC REPORTS
Volume 9, Issue -, Pages -

Publisher

NATURE RESEARCH
DOI: 10.1038/s41598-019-56807-y

Keywords

-

Funding

  1. Priority Research Centers Program through the National Research Foundation of Korea (NRF) - Ministry of Education, Science and Technology [2018R1A6A1A03024334]
  2. National Research Foundation of Korea - Korean Government [NRF-2019R1A2C1006360]

Ask authors/readers for more resources

Solar-driven photoelectrochemical water splitting (PEC-WS) using semiconductor photoelectrodes is considered a promising solution for sustainable, renewable, clean, safe and alternative energy sources such as hydrogen. Here, we report the synthesis and characterization of a novel heterostructure MoS2/GaN to be used as a photoanode for PEC-WS. The heterostructure was synthesized by metal-organic chemical vapor deposition of single crystalline GaN onto a c-plane sapphire substrate, followed by the deposition of a visible light responding MoS2 monolayer (E-g = 1.9 eV) formed by a Mo-sulfurization technique. Our experimental results reveal that MoS2/GaN photoanode achieved efficient light harvesting with photocurrent density of 5.2 mA cm(-2) at 0V vs Ag/AgCl, which is 2.6 times higher than pristine GaN. Interestingly, MoS2/GaN exhibited a significantly enhanced applied-bias-photon-to-current conversion efficiency of 0.91%, whereas reference GaN yielded an efficiency of 0.32%. The superior PEC performance of the MoS2/GaN photoelectrode is mainly related to the enhanced light absorption due to excellent photocatalytic behavior of MoS2, which reduces charge transfer resistance between the semiconductor and electrolyte interface, and the improvement of charge separation and transport. This result gives a new perspective on the importance of MoS2 as a cocatalyst coated onto GaN to synthesize photoelectrodes for efficient solar energy conversion devices.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available