4.6 Article

Self-Compacted Concrete with Self-Protection and Self-Sensing Functionality for Energy Infrastructures

Journal

MATERIALS
Volume 13, Issue 5, Pages -

Publisher

MDPI
DOI: 10.3390/ma13051106

Keywords

SCC; self-diagnosis; electrical resistivity; PZR; CNT; CMF; thermal fatigue

Funding

  1. European Union's H2020-LORCENIS Project, Long Lasting Reinforced Concrete for Energy Infrastructure under Severe Operating Conditions [685445]

Ask authors/readers for more resources

This paper aims to demonstrate the self-protection and self-sensing functionalities of self-compacted concrete (SCC) containing carbon nanotubes (CNT) and carbon microfibers (CMF) in a hybrid system. The ability for self-sensing at room temperature and that of self-protection after thermal fatigue cycles is evaluated. A binder containing a high volume of supplementary mineral additions (30%BFSand20%FA) and different type of aggregates (basalt, limestone, and clinker) are used. The self-diagnosis is assessed measuring electrical resistivity (ER) and piezoresistivity (PZR) in compression mode within the elastic region of the concrete. Thermal fatigue is evaluated with mechanical and crack measurements after heat cycles (290-550 degrees C). SCC withstands high temperature cycles. The protective effect of the hybrid additive (CNT+CMF) notably diminishes damage by keepinghigher residual strength and lessmicrocracking of the concrete. Significant reductions in ER are detected. The self-diagnosis ability of functionalized SCC isconfirmed with PZR. A content of the hybrid functional additive (CNT+CMF) in the percolation region is recommended to maximize the self-sensing sensitivity. Other parameters as sample geometry, sensor location, power supply, and load level have less influence.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available