4.8 Article

K-Ion Storage Enhancement in Sb2O3/Reduced Graphene Oxide Using Ether-Based Electrolyte

Journal

ADVANCED ENERGY MATERIALS
Volume 10, Issue 5, Pages -

Publisher

WILEY-V C H VERLAG GMBH
DOI: 10.1002/aenm.201903455

Keywords

ether-based electrolytes; high-concentration; K-ion batteries; reduce graphene oxide; Sb2O3

Funding

  1. National Natural Science Foundation of China [51702056, 51772135, 21703081]
  2. Ministry of Education of China [6141A02022516]
  3. Fundamental Research Funds for the Central Universities [21617330]
  4. China Postdoctoral Science Foundation [2017M622902, 2019T120790]
  5. High-Performance Super Computing Platform of Jinan University

Ask authors/readers for more resources

In this work, an ether-based electrolyte is adopted instead of conventional ester-based electrolyte for an Sb2O3-based anode and its enhancement mechanism is unveiled for K-ion storage. The anode is fabricated by anchoring Sb2O3 onto reduced graphene oxide (Sb2O3-RGO) and it exhibits better electrochemical performance using an ether-based electrolyte than that using a conventional ester-based electrolyte. By optimizing the concentration of the electrolyte, the Sb2O3-RGO composite delivers a reversible specific capacity of 309 mAh g(-1) after 100 cycles at 100 mA g(-1). A high specific capacity of 201 mAh g(-1) still remains after 3300 cycles (111 days) at 500 mA g(-1) with almost no decay, exhibiting a longer cycle life compared with other metallic oxides. In order to further reveal the intrinsic mechanism, the energy changes for K atom migrating from surface into the sublayer of Sb2O3 are explored by density functional theory calculations. According to the result, the battery using the ether-based electrolyte exhibits a lower energy change and migration barrier than those using other electrolytes for K-ion, which is helpful to improve the K-ion storage performance. It is believed that the work can provide deep understanding and new insight to enhance electrochemical performance using ether-based electrolytes for KIBs.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available