4.8 Article

MXene Materials for the Electrochemical Nitrogen Reduction-Functionalized or Not?

Journal

ACS CATALYSIS
Volume 10, Issue 1, Pages 253-264

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acscatal.9b01925

Keywords

MXenes; electrocatalysis; nitrogen reduction; ammonia; functionalization; DFT; electrochemistry

Funding

  1. Canadian Institute for Advanced Research (CIFAR) through the Bioinspired Solar Energy Program
  2. National Science Foundation Energy [DMR180024, DMR180108]

Ask authors/readers for more resources

We use density functional theory calculations to study a group of 213 materials known as MXenes toward the electrochemical nitrogen reduction reaction (NRR) to ammonia. So far, all computational studies have only considered the NRR chemistry on unfunctionalized (bare) MXenes. In this study, we investigate a total of 65 bare and functionalized MXenes. We establish free energy diagrams for the NRR on the basal planes of 55 different M2XTx MXenes (M = Ti, V, Zr, Nb, Mo, Ta, W; X = C, N) to span a large variety of possible chemistries. Energy trends with respect to the metal as well as nonmetal constituent of the MXenes are established for both bare and functionalized MXenes. We determine the limiting potentials and find that either the formation of NH3 from *NH2 or the formation of *N2H is the potential limiting reaction step for bare and functionalized MXenes, respectively. We find several Mo-, W-, and V-based MXenes (Mo2C, Mo2N, W2N, W2NH2, and V2N) to have suitable theoretical overpotentials for the NRR. Importantly, calculated Pourbaix stability diagrams combined with selectivity analysis, however, reveal that all bare MXenes are not stable under relevant NRR operating conditions. The only functionalized MXene with the three minimum required properties (i) having a low theoretical overpotential, (ii) being stable under NRR conditions, and (iii) having selectivity toward NRR rather than the parasitic HER is W2CH2, which is a H-terminated MXene. Finally, on the basis of our findings, we explore other routes for improving the NRR chemistry by studying 10 additional MXenes with the chemical formula M3X2Tx and MXenes with other functional groups (T-x = S, F, Cl). This opens up a larger variety and tunability of MXenes to be considered for the NRR.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available