4.8 Article

Continuous transcription initiation guarantees robust repair of all transcribed genes and regulatory regions

Journal

NATURE COMMUNICATIONS
Volume 11, Issue 1, Pages -

Publisher

NATURE PUBLISHING GROUP
DOI: 10.1038/s41467-020-14566-9

Keywords

-

Funding

  1. European Research Council [309612]
  2. European Research Council (ERC) [309612] Funding Source: European Research Council (ERC)

Ask authors/readers for more resources

Inhibition of transcription caused by DNA damage-impaired RNA polymerase II (Pol II) elongation conceals a local increase in de novo transcription, slowly progressing from Transcription Start Sites (TSSs) to gene ends. Although associated with accelerated repair of Pol II-encountered lesions and limited mutagenesis, it is still unclear how this mechanism is maintained during genotoxic stress-recovery. Here we uncover a widespread gain in chromatin accessibility and preservation of the active H3K27ac mark after UV-irradiation. The concomitant increase in Pol II escape from promoter-proximal pause (PPP) sites of most active genes, PROMPTs and enhancer RNAs favors unrestrained initiation, as evidenced by the synthesis of nascent RNAs including start RNAs. Accordingly, drug-inhibition of PPP-release replenishes levels of pre-initiating Pol II at TSSs after UV. Our data show that such continuous engagement of Pol II molecules ensures maximal transcription-driven repair throughout expressed genes and regulatory loci. Importantly, revealing this unanticipated regulatory layer of UV-response provides physiological relevant traction to the emerging concept that Pol II initiation rate is determined by pause-release dynamics.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available