4.8 Article

A RAF-SnRK2 kinase cascade mediates early osmotic stress signaling in higher plants

Journal

NATURE COMMUNICATIONS
Volume 11, Issue 1, Pages -

Publisher

NATURE PUBLISHING GROUP
DOI: 10.1038/s41467-020-14477-9

Keywords

-

Funding

  1. Strategic Priority Research Program of the Chinese Academy of Sciences [XDB27040106, XDB27040000]
  2. National Natural Science Foundation of China [31771358]
  3. China Scholarship Council

Ask authors/readers for more resources

Osmoregulation is important for plant growth, development and response to environmental changes. SNF1-related protein kinase 2s (SnRK2s) are quickly activated by osmotic stress and are central components in osmotic stress and abscisic acid (ABA) signaling pathways; however, the upstream components required for SnRK2 activation and early osmotic stress signaling are still unknown. Here, we report a critical role for B2, B3 and B4 subfamilies of Raf-like kinases (RAFs) in early osmotic stress as well as ABA signaling in Arabidopsis thaliana. B2, B3 and B4 RAFs are quickly activated by osmotic stress and are required for phosphorylation and activation of SnRK2s. Analyses of high-order mutants of RAFs reveal critical roles of the RAFs in osmotic stress tolerance and ABA responses as well as in growth and development. Our findings uncover a kinase cascade mediating osmoregulation in higher plants. Rapid activation of SnRK2 kinases is central to plant responses to osmotic stress and abscisic acid. Here the authors show that a group of Raf-like kinases are very quickly activated by osmotic stress, and then phosphorylate and activate SnRK2s.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available