4.8 Article

Cryo-EM structures of the XPF-ERCC1 endonuclease reveal how DNA-junction engagement disrupts an auto-inhibited conformation

Journal

NATURE COMMUNICATIONS
Volume 11, Issue 1, Pages -

Publisher

NATURE PUBLISHING GROUP
DOI: 10.1038/s41467-020-14856-2

Keywords

-

Funding

  1. Crick/UCL joint PhD studentship
  2. Francis Crick Institute from Cancer Research UK [FC001115]
  3. UK Medical Research Council [FC001115]
  4. Wellcome Trust [FC001115]
  5. National Institute for Health Research University College London Hospitals Biomedical Research Centre
  6. Cancer Research UK [C12209/A16749]

Ask authors/readers for more resources

The structure-specific endonuclease XPF-ERCC1 participates in multiple DNA damage repair pathways including nucleotide excision repair (NER) and inter-strand crosslink repair (ICLR). How XPF-ERCC1 is catalytically activated by DNA junction substrates is not currently understood. Here we report cryo-electron microscopy structures of both DNA-free and DNA-bound human XPF-ERCC1. DNA-free XPF-ERCC1 adopts an auto-inhibited conformation in which the XPF helical domain masks the ERCC1 (HhH)(2) domain and restricts access to the XPF catalytic site. DNA junction engagement releases the ERCC1 (HhH)(2) domain to couple with the XPF-ERCC1 nuclease/nuclease-like domains. Structure-function data indicate xeroderma pigmentosum patient mutations frequently compromise the structural integrity of XPF-ERCC1. Fanconi anaemia patient mutations in XPF often display substantial in-vitro activity but are resistant to activation by ICLR recruitment factor SLX4. Our data provide insights into XPF-ERCC1 architecture and catalytic activation. The endonuclease XPF-ERCC1 is a key component of the repair machinery to process both intra-strand and inter-strand DNA crosslinks. Here the authors present the cryo-EM structures of DNA-free and DNA-bound human XPF-ERCC1 and find that DNA-free XPF-ERCC1 adopts an auto-inhibited conformation, which is opened up upon DNA binding and they also characterise the biochemical properties of patient-derived XPF-ERCC1 mutations.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available