4.8 Article

Supersymmetry in the time domain and its applications in optics

Journal

NATURE COMMUNICATIONS
Volume 11, Issue 1, Pages -

Publisher

NATURE PORTFOLIO
DOI: 10.1038/s41467-020-14634-0

Keywords

-

Funding

  1. Spanish National Plan projects (AEI/FEDER, UE) [TEC2015-73581]
  2. MINECO/FEDER UE XCORE [TEC2015-70858-C2-1-R]
  3. Generalitat Valenciana Plan project NXTIC [AICO/2018/324]
  4. F.P.I. Grant [BES-2013-062952]

Ask authors/readers for more resources

Supersymmetry is a conjectured symmetry between bosons and fermions aiming at solving fundamental questions in string and quantum field theory. Its subsequent application to quantum mechanics led to a ground-breaking analysis and design machinery, later fruitfully extrapolated to photonics. In all cases, the algebraic transformations of quantum-mechanical supersymmetry were conceived in the space realm. Here, we demonstrate that Maxwell's equations, as well as the acoustic and elastic wave equations, also possess an underlying supersymmetry in the time domain. We explore the consequences of this property in the field of optics, obtaining a simple analytic relation between the scattering coefficients of numerous time-varying systems, and uncovering a wide class of reflectionless, three dimensional, all-dielectric, isotropic, omnidirectional, polarisation-independent, non-complex media. Temporal supersymmetry is also shown to arise in dispersive media supporting temporal bound states, which allows engineering their momentum spectra and dispersive properties. These unprecedented features may enable the creation of novel reconfigurable devices, including invisible materials, frequency shifters, isolators, and pulse-shape transformers.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available