4.8 Article

Classification and characterization of nonequilibrium Higgs modes in unconventional superconductors

Journal

NATURE COMMUNICATIONS
Volume 11, Issue 1, Pages -

Publisher

NATURE PUBLISHING GROUP
DOI: 10.1038/s41467-019-13763-5

Keywords

-

Funding

  1. Max Planck-UBC-UTokyo Center for Quantum Materials
  2. JSPS KAKENHI [16K17729]
  3. JST PRESTO [JPMJPR16N7]
  4. ERC [724103]
  5. Ministerium fur Wissenschaft, Forschung und Kunst Baden-Wurttemberg through the Juniorprofessuren-Programm
  6. Daimler und Benz Stiftung
  7. DFG [UH 90/13-1]
  8. Grants-in-Aid for Scientific Research [16K17729] Funding Source: KAKEN

Ask authors/readers for more resources

Recent findings of new Higgs modes in unconventional superconductors require a classification and characterization of the modes allowed by nontrivial gap symmetry. Here we develop a theory for a tailored nonequilibrium quantum quench to excite all possible oscillation symmetries of a superconducting condensate. We show that both a finite momentum transfer and quench symmetry allow for an identification of the resulting Higgs oscillations. These serve as a fingerprint for the ground state gap symmetry. We provide a classification scheme of these oscillations and the quench symmetry based on group theory for the underlying lattice point group. For characterization, analytic calculations as well as full scale numeric simulations of the transient optical response resulting from an excitation by a realistic laser pulse are performed. Our classification of Higgs oscillations allows us to distinguish between different symmetries of the superconducting condensate.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available