4.8 Article

Glucose homeostasis is regulated by pancreatic β-cell cilia via endosomal EphA-processing

Journal

NATURE COMMUNICATIONS
Volume 10, Issue -, Pages -

Publisher

NATURE PUBLISHING GROUP
DOI: 10.1038/s41467-019-12953-5

Keywords

-

Funding

  1. German Center for Diabetes Research
  2. Alberta Diabetes Foundation (ADF)
  3. German Federal Ministry of Education and Research (BMBF) [01GI0925]

Ask authors/readers for more resources

Diabetes mellitus affects one in eleven adults worldwide. Most suffer from Type 2 Diabetes which features elevated blood glucose levels and an inability to adequately secrete or respond to insulin. Insulin producing beta-cells have primary cilia which are implicated in the regulation of glucose metabolism, insulin signaling and secretion. To better understand how beta-cell cilia affect glucose handling, we ablate cilia from mature beta-cells by deleting key cilia component Ift88. Here we report that glucose homeostasis and insulin secretion deteriorate over 12 weeks post-induction. Cilia/basal body components are required to suppress spontaneous auto-activation of EphA3 and hyper-phosphorylation of EphA receptors inhibits insulin secretion. In beta-cells, loss of cilia/basal body function leads to polarity defects and epithelial-to-mesenchymal transition. Defective insulin secretion from IFT88-depleted human islets and elevated pEPHA3 in islets from diabetic donors both point to a role for cilia/basal body proteins in human glucose homeostasis.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available