4.8 Article

Systematic Analysis of AU-Rich Element Expression in Cancer Reveals Common Functional Clusters Regulated by Key RNA-Binding Proteins

Journal

CANCER RESEARCH
Volume 76, Issue 14, Pages 4068-4080

Publisher

AMER ASSOC CANCER RESEARCH
DOI: 10.1158/0008-5472.CAN-15-3110

Keywords

-

Categories

Ask authors/readers for more resources

Defects in AU-rich elements (ARE)-mediated posttranscriptional control can lead to several abnormal processes that underlie carcinogenesis. Here, we performed a systematic analysis of ARE-mRNA expression across multiple cancer types. First, the ARE database (ARED) was intersected with The Cancer Genome Atlas databases and others. A large set of ARE-mRNAs was over-represented in cancer and, unlike non-ARE-mRNAs, correlated with the reversed balance in the expression of the RNA-binding proteins tristetraprolin (TTP, ZFP36) and HuR (ELAVL1). Serial statistical and functional enrichment clustering identified a cluster of 11 overexpressed ARE-mRNAs (CDC6, KIF11, PRC1, NEK2, NCAPG, CENPA, NUF2, KIF18A, CENPE, PBK, TOP2A) that negatively correlated with TTP/HuR mRNA ratios and was involved in the mitotic cell cycle. This cluster was upregulated in a number of solid cancers. Experimentally, we demonstrated that the ARE-mRNA cluster is upregulated in a number of tumor breast cell lines when compared with noninvasive and normal-like breast cancer cells. RNA-IP demonstrated the association of the ARE-mRNAs with TTP and HuR. Experimental modulation of TTP or HuR expression led to changes in the mitosis ARE-mRNAs. Posttranscriptional reporter assays confirmed the functionality of AREs. Moreover, TTP augmented mitotic cell-cycle arrest as demonstrated by flow cytometry and histone H3 phosphorylation. We found that poor breast cancer patient survival was significantly associated with low TTP/HuR mRNA ratios and correlated with high levels of the mitotic ARE-mRNA signature. These results significantly broaden the role of AREs and their binding proteins in cancer, and demonstrate that TTP induces an antimitotic pathway that is diminished in cancer. (C)2016 AACR.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available