4.8 Article

Enzyme-free and label-free fluorescence aptasensing strategy for highly sensitive detection of protein based on target-triggered hybridization chain reaction amplification

Journal

BIOSENSORS & BIOELECTRONICS
Volume 70, Issue -, Pages 324-329

Publisher

ELSEVIER ADVANCED TECHNOLOGY
DOI: 10.1016/j.bios.2015.03.053

Keywords

Enzyme-free; Label-free; Hybridization chain reaction; Protein; Fluorescence

Funding

  1. National Natural Science Foundation of China [21375072, 21175076, 21445002]
  2. Scientific Research Award Fund for Excellent Middle-aged and Young Scientists of Shandong Province [BS2013DX025]
  3. Basic Research Program of Qingdao [13-1-4-226-jch]
  4. Research Foundation for Distinguished Scholars of Qingdao Agricultural University [631104, 631311]

Ask authors/readers for more resources

Proteins are of great importance in medical and biological fields. In this paper, a novel fluorescent aptasensing strategy for protein assay has been developed based on target-triggered hybridization chain reaction (HCR) and graphene oxide (GO)-based selective fluorescence quenching. Three DNA probes, a helper DNA probe (HP), hairpin probe 1 (H1) and hairpin probe 2 (H2) are ingeniously designed. In the presence of the target, the aptamer sequences in HP recognize the target to form a target aptamer complex, which causes the HP conformation change, and then triggers the chain-like assembly of H1 and H2 through the hybridization chain reaction, generating a long chain of HP leading complex of H1 and H2. At last the fluorescence indicator SYBR Green I (SG) binds with the long double strands of the HCR product through both intercalation and minor groove binding. When GO was added into the solutions after HCR, the free H1, H2 and SG would be closely adsorbed onto GO surface via pi-pi stacking. However, the HCR product cannot be adsorbed on GO surface, thereby the SG bound to HCR product gives a strong fluorescence signal dependent on the concentration of the target. With the use of platelet-derived growth factor BB (PDGF-BB) as the model analyte, this newly designed protocol provides a highly sensitive fluorescence detection of PDGF-BB with a limit of detection down to 1.25 pM, and also exhibit good selectivity and applicability in complex matrixes. Therefore, the proposed aptasensing strategy based on target-triggered hybridization chain reaction amplification should have wide applications in the diagnosis of genetic diseases due to its simplicity, low cost, and high sensitivity at extremely low target concentrations. (C) 2015 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available