4.7 Article

Cotreatment with Smac mimetics and demethylating agents induces both apoptotic and necroptotic cell death pathways in acute lymphoblastic leukemia cells

Journal

CANCER LETTERS
Volume 375, Issue 1, Pages 127-132

Publisher

ELSEVIER IRELAND LTD
DOI: 10.1016/j.canlet.2016.02.040

Keywords

Smac; Leukemia; Apoptosis; Necroptosis; Demethylating agents

Categories

Funding

  1. Deutsche Forschungsgemeinschaft
  2. European Community
  3. BMBF
  4. Wilhelm-Sander Stiftung
  5. IAP VII

Ask authors/readers for more resources

Treatment resistance in acute lymphoblastic leukemia (ALL) is often caused by defects in programmed cell death, e.g. by overexpression of Inhibitor of Apoptosis (IAP) proteins. Here, we report that small molecule Smac mimetics (i.e. BV6, LCL161, birinapant) that neutralize x-linked IAP (XIAP), cellular IAP (cIAP)1 and clAP2 cooperate with demethylating agents (i.e. 5-azacytidine (5AC) or 5-aza-2'-deoxycytidine (DAC)) to induce cell death in ALL cells. Molecular studies reveal that induction of cell death is preceded by BV6-mediated depletion of clAP1 protein and involves tumor necrosis factor (TNF)alpha autocrine/paracrine signaling, since the TNF alpha-blocking antibody Enbrel significantly reduces BV6/5AC-induced cell death. While BV6/5AC cotreatment induces caspase-3 activation, the broad-range caspase inhibitor N-benzyloxycarbonyl-Val-Ala-Asp-fluoromethylketone (zVAD.fmk) only partly rescues ALL cells from BV6/SAC-induced cell death. This indicates that BV6/5AC cotreatment engages non-apoptotic cell death upon caspase inhibition. Indeed, genetic silencing of key components of necroptosis such as Receptor Interacting Protein (RIP)3 or mixed lineage kinase domain-like (MLKL) in parallel with administration of zVAD.fmk provides a significantly better protection against BV6/5AC-induced cell death compared to the use of zVAD.fmk alone. Similarly, concomitant administration of pharmacological inhibitors of necroptosis (i.e. necrostatin-1s, GSK'872, dabrafenib, NSA) together with zVAD.fmk is superior in rescuing cells from BV6/5AC-induced cell death compared to the use of zVAD.fmk alone. These findings demonstrate that in ALL cells BV6/5AC-induced cell death is mediated via both apoptotic and necroptotic pathways. Importantly, BV6/5AC cotreatment triggers necroptosis in ALL cells that are resistant to apoptosis due to caspase inhibition. This opens new perspectives to overcome apoptosis resistance with important implications for the development of new treatment strategies for ALL. (C) 2016 Elsevier Ireland Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available