4.5 Article

Lead-mediated inhibition of lysine acetylation and succinylation causes reproductive injury of the mouse testis during development

Journal

TOXICOLOGY LETTERS
Volume 318, Issue -, Pages 30-43

Publisher

ELSEVIER IRELAND LTD
DOI: 10.1016/j.toxlet.2019.10.012

Keywords

Lead; Lysine acetylation; Lysine succinylation; Mouse testis; Reproductive injury; Energy generation

Categories

Funding

  1. National Natural Science Foundation of China [31772594]
  2. Special Fund for Agro-scientific Research in the Public Interest of China [200903056]
  3. Key Project of Shanghai Municipal Agricultural Commission of China [2014-2-5]

Ask authors/readers for more resources

Lead (Pb), a widespread heavy metal, may induce serious diseases, particularly male reproductive injury. However, the mechanisms by which Pb induces testicular injury remain unclear. In this paper, we established a mouse model of Pb-induced testicular injury via an intraperitoneal injection of lead chloride at a concentration of 1.5 mg/kg body weight. We confirmed that Pb could induce a series of injuries, including a low litter size, smaller testes, more weak offspring, direct injury, and aberrant spermiogenesis. Our study demonstrated that Pb could inhibit lysine acetylation (Kac) and succinylation (Ksuc) via western blot (WB) and immunofluorescence (IF) analyses. We subsequently separated different germ cells that contained Pre-meiotic spermatogonia (SPG), meiotic spermatocyte (SPC), and round spermatid (RS) into the Pb-treated and control groups and verified that Pb inhibited Kac in SPC, RS, and particularly, during meiosis. Furthermore, our results regarding the inhibition of pyruvate kinase and mitochondrial electron transport chain complex I and II in the Pb-treated groups suggested that Pb may restrain key enzymes to block the TCA cycle and that the low TCA cycle activity could reduce the contents of two important metabolites, acetyl-CoA and succinyl-CoA, to inhibit Kac and Ksuc. Moreover, we examined the influences of the inhibition of Kac and Ksuc on spermiogenesis, which indicated that decreased Kac and Ksuc could impede the replacement of transition proteins in elongating sperm and disorder the distribution of germ cells in the seminiferous tubule. Our research provides novel insights into the mechanisms of Pb reproductive toxicity with respect to lysine acetylation and succinylation.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available