4.6 Article

Short-term testicular warming under anesthesia causes similar increases in testicular blood flow in Bos taurus versus Bos indicus bulls, but no apparent hypoxia

Journal

THERIOGENOLOGY
Volume 145, Issue -, Pages 94-99

Publisher

ELSEVIER SCIENCE INC
DOI: 10.1016/j.theriogenology.2020.01.045

Keywords

Testicular thermoregulation; Heat stress; Tissue perfusion; Tissue oxygenation

Funding

  1. FAPESP [2018/02007-6]
  2. NSERC [RGPIN-2019-04823]
  3. Gustav Rosenberger Memorial Fund
  4. FMVZ Unesp, Botucatu
  5. Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP) [18/02007-6] Funding Source: FAPESP

Ask authors/readers for more resources

Bull testes must be 4-5 degrees C below body temperature, with testicular warming more likely to cause poor-quality sperm in Bos taurus (European/British) versus Bos indicus (Indian/zebu) bulls. Despite a long-standing dogma that testicular hyperthermia causes hypoxia, we reported that increasing testicular temperature in bulls and rams enhanced testicular blood flow and O-2 delivery/uptake, without hypoxia. Our objective was to determine effects of short-term testicular hyperthermia on testicular blood flow, O-2 delivery and uptake and evidence of testicular hypoxia in pubertal Angus (B. taurus) and Nelore (B. indicus) bulls (nine per breed) under isoflurane anesthesia. As testes were warmed from 34 to 40 degrees C, there were increases (P < 0.0001, but no breed effects) in testicular blood flow (mean +/- SEM, 9.59 +/- 0.10 vs 17.67 +/- 0.29 mL/min/100 g, respectively), O-2 delivery (1.79 +/- 0.06 vs 3.44 +/- 0.11 mL O-2/min/100 g) and O-2 consumption (0.69 +/- 0.07 vs 1.25 +/- 0.54 mL O-2/min/100 g), but no indications of testicular hypoxia. Hypotheses that: 1) both breeds increase testicular blood flow in response to testicular warming; and 2) neither breed has testicular hypoxia, were supported; however, the hypothesis that the relative increase in blood flow is greater in Angus versus Nelore was not supported. Although these were short-term increases in testicular temperature in anesthetized bulls, results did not support the long-standing dogma that increased testicular temperature does not increase testicular blood flow and an ensuing hypoxia is responsible for decreases in motile, morphologically normal and fertile sperm. (C) 2020 Elsevier Inc. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available