4.7 Article

Enrichment and sensitive determination of phthalate esters in environmental water samples: A novel approach of MSPE-HPLC based on PAMAM dendrimers-functionalized magnetic-nanoparticles

Journal

TALANTA
Volume 206, Issue -, Pages -

Publisher

ELSEVIER
DOI: 10.1016/j.talanta.2019.120213

Keywords

Phthalate esters; Magnetic solid-phase extraction; PAMAM dendrimers; High performance liquid chromatography; Environmental water samples

Funding

  1. National Natural Science Foundation of China [21677177]

Ask authors/readers for more resources

Phthalate esters (PAEs) are an important kind of environmental endocrine disrupting chemicals, and have attracted great attention in environmental field. Present study described a new method for rapid and sensitive determination of PAEs including dibenzyl phthalate (DPhP), dibutyl phthalate (DnPP), and dicyclohexyl phthalate (DCHP) from aqueous matrices based on magnetic solid-phase extraction. Polyamidoamine (PAMAM) dendrimers-grafted magnetic-nanoparticles were synthesized and characterized, and the expected integration of more multifunctional sites of PAMAM dendrimers and rapid separation property was utilized for method development. To achieve the best extraction efficiency, several important parameters were optimized including the dosage of the adsorbent, sample pH, kind and volume of eluent, extraction time, desorption time, ionic strength. Under the optimal conditions, three phthalate esters were well enriched and simultaneously determined by high performance liquid chromatography with variable wavelength detector (VWD). Excellent linearities were observed in the range of 0.1-600 mu g L-1 for DPhP and DnPP and 0.5-600 mu g L-1 for DCHP, and all correlation coefficients (R-2) were larger than 0.997. The limits of detection (LODs, S/N = 3) were ranged from 0.025 to 0.16 mu g L-1. The spiked recoveries of PAEs in real water samples were in the range of 93.5-101.8% with satisfied relative standard deviations (RSDs) ranging from 0.9 to 4.1%. The prepared magnetic materials have shown good adsorption capability for PAEs and the developed method earned merits such as high sensitivity, simplicity, rapidness and environmental friendliness, which can be used as a robust alternative tool for monitoring PAEs in water samples.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available