4.7 Article

Biocompatible, hydrophobic and resilience graphene/chitosan composite aerogel for efficient oil-water separation

Journal

SURFACE & COATINGS TECHNOLOGY
Volume 385, Issue -, Pages -

Publisher

ELSEVIER SCIENCE SA
DOI: 10.1016/j.surfcoat.2020.125361

Keywords

Chitosan; Graphene oxide; Hydrophobic coating; Compressibility; Biocompatibility; Oil-water separation

Funding

  1. National Natural Science Foundation of China [21476267]
  2. Hunan Natural Science Foundation [2018JJ2482]

Ask authors/readers for more resources

Three-dimensional aerogels with hydrophobic and lipophilic properties have attracted wide attention in the effective cleaning of oil-spills. However, cost-effectiveness, biodegradability, and recycling are still challenging in the application of aerogels for oil-water separation. In this paper, we have prepared high biocompatibility, low cost, and hydrophobic composite aerogels (WCA = 148 degrees) through directional freezing-drying technology by using chitosan (CS) as the skeleton substrate, reduced graphene oxide nanosheets (rGO) as enhancements and hydrophobic silicon particles/polydimethylsioxane (H-SiO2/PDMS) as the hydrophobic modifier. The composite aerogel prepared has good adsorption capacity (18-45 g/g), good chemical and thermal stability in a harsh environment. More importantly, the adsorbed organic solvents and oils adsorbed can be easily extruded from aerogels due to its excellent compressive properties. In addition, adsorption rate for pump oil and silicone oil is accelerated with the increase of temperature. The adsorption kinetics of aerogel on silicone oil and pump oil can be well fitted by pseudo-first order kinetic equation.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available