4.7 Article

Microbial resistance promotes plant production in a four-decade nutrient fertilization experiment

Journal

SOIL BIOLOGY & BIOCHEMISTRY
Volume 141, Issue -, Pages -

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.soilbio.2019.107679

Keywords

Microbial community resistance; Ecological networks; Long-term nutrient fertilization; Crop production

Categories

Funding

  1. National Natural Science Foundation of China [31870480]
  2. Strategic Priority Research Program of the Chinese Academy of Sciences [XDB15010101]
  3. China Biodiversity Observation Networks (Sino BON)

Ask authors/readers for more resources

There is a current lack of mechanistic understanding on the relationships between a soil microbial community, crop production, and nutrient fertilization. Here, we combined ecological network theory with ecological resistance index to evaluate the responses of microbial community to additions of multiple inorganic and organic fertilizers, and their associations with wheat production in a 35-year field experiment. We found that microbial phylotypes were grouped into four major ecological clusters, which contained a certain proportions of fast-growers, copiotrophic groups, and potential plant pathogens. The application of combined inorganic fertilizers and cow manure led to the most resistant (less responsive) microbial community, which was associated with the highest levels of plant production, nutrient availability, and the lowest relative abundance of potential fungal plant pathogens after 35 years of nutrient fertilization. In contrast, microbial community was highly responsive (low resistance) to inorganic fertilization alone or plus wheat straw, which was associated with lower crop production, nutrient availability, and higher abundance of potential fungal plant pathogens. Our work demonstrates that the response of microbial community to long-term nutrient fertilizations largely regulates plant production in agricultural ecosystems, and suggests that manipulating these microbial phylotypes may offer a sustainable solution to the maintenance of field productivity under long-term nutrient fertilization scenarios.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available